
FHIR R4 / R5 / R6
Norway 

30-Aug 2023

Grahame Grieve



R5 Overview

• What’s in R5

• Dealing with versions in FHIR

• R6 plans 



Overview of changes in R5

• Complete Rework of Subscriptions framework

• Rework the type framework

• Move extensions to a new package

• RESTful API and Search clarifications

• New, renamed, and deleted resources & types (R4 & R4B)

• Moved many code systems and value sets to terminology.hl7.org icon

• Added Operations for Large Resources

• Added the ability to define additional bindings on elements

http://hl7.org/fhir/history.html

http://hl7.org/fhir/history.html


Rework of Subscriptions framework

• Publish & Subscribe Pattern in FHIR
• Like WebSub, Pub/Sub, etc.

• Reusable topics across systems

• Based on resource changes or even

• Servers choose what to support

• Optimized implementations

• Server-Driven workflows



Rework the type framework

• Formal Definitions for Base types 

• Formal Definitions for CanonicalResource / MetadataResource
• As interfaces

• Mostly only relevant for code generators 



Move extensions to a new package

• Frequency of updates to Extensions was starting to become a real 
problem

• http://hl7.org/fhir/extensions / hl7.fhir.uv.extensions

• Still integrated into the navigation structure of the standard

• But will be published more often 
• 3x a year?

• Also includes the translations between R4/R5 – so we can fix them



RESTful API and Search clarifications

• Lots of small changes to the RESTful API and search pages
• Normative pages (no breaking changes)

• Adding clarification language 

• Making conformance expectations clearer (“SHALL…”)

• These should mostly be regarded as applying to R4 implementations

• Are not expected to be breaking (but why did we have to clarify?)

• You should review them (difference, difference)

http://services.w3.org/htmldiff?doc1=http%3A%2F%2Fhl7.org%2Ffhir%2FR4%2Fhttp.html&doc2=http%3A%2F%2Fhl7.org%2Ffhir%2FR5%2Fhttp.html
http://services.w3.org/htmldiff?doc1=http%3A%2F%2Fhl7.org%2Ffhir%2FR4%2Fsearch.html&doc2=http%3A%2F%2Fhl7.org%2Ffhir%2FR5%2Fsearch.html


New, renamed, and deleted resources & 
types
• ActorDefinition, ArtifactAssessment, BiologicallyDerivedProductDispense,

ConditionDefinition,DeviceAssociation, DeviceDispense, EncounterHistory,
FormularyItem, GenomicStudy, ImagingSelection,InventoryItem,
InventoryReport, NutritionIntake, NutritionProduct, Permission,
TestPlan and Transport

• New types: integer64, Availability and ExtendedContactDetail

• Renamed resources: DeviceUseStatement -> DeviceUsage and RequestGroup
-> RequestOrchestration

• Removed resources: CatalogEntry, DocumentManifest (use List), Media, 
ResearchDefinition, ResearchElementDefinition, RiskEvidenceSynthesis, and 
the type Contributor

• For the Medication Definition resource… lots of changes

http://hl7.org/fhir/history.html

http://hl7.org/fhir/actordefinition.html
http://hl7.org/fhir/artifactassessment.html
http://hl7.org/fhir/biologicallyderivedproductdispense.html
http://hl7.org/fhir/conditiondefinition.html
http://hl7.org/fhir/deviceassociation.html
http://hl7.org/fhir/devicedispense.html
http://hl7.org/fhir/encounterhistory.html
http://hl7.org/fhir/formularyitem.html
http://hl7.org/fhir/genomicstudy.html
http://hl7.org/fhir/imagingselection.html
http://hl7.org/fhir/inventoryitem.html
http://hl7.org/fhir/inventoryreport.html
http://hl7.org/fhir/nutritionintake.html
http://hl7.org/fhir/nutritionproduct.html
http://hl7.org/fhir/permission.html
http://hl7.org/fhir/testplan.html
http://hl7.org/fhir/transport.html
http://hl7.org/fhir/datatypes.html#integer64
http://hl7.org/fhir/metadatatypes.html#Availability
http://hl7.org/fhir/metadatatypes.html#ExtendedContactDetail
http://hl7.org/fhir/history.html


Code systems and value sets to 
terminology.hl7.org
• Moving most value sets and code systems out to 

http://terminology.hl7.org (THO / UTG)

• Higher update frequency (change proposal 

• More reuse in v2/CDA etc

• Didn’t move the vs/cs used in required bindings

• The package hl7.terminology.r{X} is always in scope

http://terminology.hl7.org/


Operations for Large Resources

• Group and List can get very big (>100k entries) (ConceptMap?)

• Resources >1MB in size (largest sighting for me: 100MB)

• Resources that size are engineering challenges 
• May become a functional challenge (processing time approaches update 

frequency)

• Define operations for
• Is entry in set 

• Add entry to set 

• Remove entry from set 



Additional Bindings

• Coded elements have one binding

• Sometimes, one binding is not enough – various use cases 
• Required bindings for restricted use contexts

• Document current binding / components of value sets

• Provide useful UI subsets (e.g. UCUM)

• Reduce the need for slicing (hard work for everyone)

• R5 allows you to add additional bindings 

• Backported to R4 etc using extensions

• IPS Example



Other changes in R5

• 4157 change requests

• 1896 substantive changes

• Most of the changes are in response to implementation feedback

https://jira.hl7.org/issues/?filter=19551
https://jira.hl7.org/browse/?filter=19552


Converting between versions

• R4 Diff: http://hl7.org/fhir/diff.html



Converting between versions

• R4/R5 Transforms (using FHIR Mapping Language)

• Not always completely successful (e.g. change was too significant)



Multiple releases of FHIR

• There have been five major releases of FHIR (Starting to work to R6)

• Over time, we change things – make breaking changes
• It would be better if we got it right first time

• But it’s better to fix things when we don’t

• Maturity rating reflects our process – change slows down over time

• No changes to normative content (some in R4)

• In the mean time, we support multiple versions…



Supported Version Releases

• Release 1: No functional support

• Release 2: Oct 2015. Being phased out (USA)
• Release 2B: May 2016 draft, a couple of large commercial. Java support only

• Release 3: Feb 2017. Not used much now (Europe)

• Release 4: Dec 2018. Main focus of implementation
• Release 4B: May 2022: Reworked some aspects of R4

• Release 5: Mar 2023. Gradual Adoption



Release History

• http://hl7.org/fhir/directory.html / http://hl7.org/fhir/package-list.json

http://hl7.org/fhir/directory.html
http://hl7.org/fhir/package-list.json


Versioning is expensive

• Historically, version changes have been very expensive 
• Or, profitable for some, but bad for health

• Much argument about everything to do with versions….



What version is this resource?

• Not explicit in every resource
• Version is a property of the channel/context, not the data

• Resources might be correct in multiple versions

• Explicit in the CapabilityStatement
• Not necessarily the same version! e.g. a cross-version repository of end-

points

• Explicit in Profiles & Implementation Guides
• These may be properties of resources or properties of the context

• Resources can (/should) conform to many profiles (+versions)



Stamping version inside a resource

• Use Resource.meta.profile:



Version Numbering Strategy (Standards)

• Publication.Minor.Patch
• Differ to SemVer in nature of changes allowed with minor revisions

• R3: 3.0.2 – 2 patch on R3
• Intermediate versions 3.x.0 by release and then 4.0.0 once finalized

• R4B is 4.3 because 4.1 & 4.2 were used by R5 drafts

• As of R5 – move to using label: 5.0.0-snapshot3
• Can’t sort purely alphabetically

• R6 currently is 6.0.0-cibuild (rolling build: cibuild = unstable)

• HL7 Implementation Guides follow the same pattern



Versioning Profiles, Value sets, Code Systems

• Policy: Use Semver
• Not all sources do (see hl7.org/fhir/codesystem-version-algorithm.html)

• Genuinely breaking changes: new artifact

• Can version independently, but we encourage you to version by 
package
• IG publisher can impose common version

• What’s easiest for tracking changes?

• Unversioned references in packages are ‘package versioned’
• Use versioned package dependencies to resolve references

• Easy for authors, harder for tools / implementers – but being done

http://hl7.org/fhir/codesystem-version-algorithm.html


Versioning Extensions

• References in Extension.url are not versioned 

• Breaking changes in extension definitions are not supported 
• Not quite the same as not possible

• References to extensions in profiles can be versioned (same rules)

• Validation might be based on older version



Cross-Version extensions

• Adopt an element in an earlier version

• See http://hl7.org/fhir/versions.html#extensions

• http://hl7.org/fhir/[version]/StructureDefinition/extension-[Path]
• New Elements

• New types on choice elements 

• New resource types (use Basic)

http://hl7.org/fhir/versions.html#extensions
http://hl7.org/fhir/%5bversion%5d/StructureDefinition/extension-%5bPath




Cross-Version extensions: Limitations

• Differences in available data types 

• Differences in narrative constraints on data values 

• Differences in terminology bindings 

• Extensions already exist (not uncommon)

• No resolution at this time (ongoing discussion)



Versioning Software Tools

• You do you
• We like semver (but vary from it)

• FHIR internal tooling stack is mature (~1 decade old)
• tx.fhir.org, Java HAPI Core, Java validator, IG Publisher, Core publisher

• No particular product roadmap (i18n!)

• Effectively a stream of regular releases 

• Major version numbers are somewhat arbitrary

• Minor/patch maintained



Supporting Multiple Versions

• Converting between versions

• API Strategy

• Persistence Strategy

• Documentation Strategy

• IG Publisher support



Converting between versions

• R4 Diff: http://hl7.org/fhir/diff.html



Converting between versions

• R4/R5 Transforms (using FHIR Mapping Language)

• Not always completely successful (e.g. change was too significant)



Java Converter

• Only supported fully for conformance resources

• Contributions for other resources are welcome



Version independent logic

• Use a façade in front of versions e.g.

IPatient = interface (IDomainResource) {

IHumanName getNameI();

}

R3.Patient = class (DomainResource, IPatient) {

public HumanName getName() {…}

public IHumanName getNameI() {…}

}

• This is a lot of work, but partially done in some reference implementations – you 
can contribute



Resource Conversion isn’t everything

• GET [base]/Patient/[id]?(params)
Accept: [content-type]

• HTTP 200 OK
Content-Type: [content-type]

{ … body …}

• The entire exchange has a version (can’t mix with one exception)



Simplest Approach: multiple end-points

• http://test.fhir.org/r3

• http://test.fhir.org/r4

• http://test.fhir.org/r5

• fhirVersion element in the applicable CapabilityStatement applies

• Pro: Simple

• Con: Logical records get multiple URLs

http://build.fhir.org/capabilitystatement-definitions.html#CapabilityStatement.fhirVersion
http://build.fhir.org/capabilitystatement-definitions.html


Single end-point, multiple versions

• http://test.fhir.org/rX

• The fhirVersion parameter on the MIME-type that applies to the 
resource (but fixes the whole exchange)

GET [base]/metadata

Accept: application/fhir+json; fhirVersion=4.0

http://build.fhir.org/http.html#version-parameter


Single end-point, multiple versions

• Server specifies what versions it supports, with a default

• Client chooses a version using the fhirVersion parameter

• Fixes the whole exchange

• Conversion information for resource names and search parameters:
https://github.com/FHIR/interversion/tree/master/package

http://build.fhir.org/http.html#version-parameter
https://github.com/FHIR/interversion/tree/master/package


Determining Server Versions

GET [base]/$versions

Accept: application/json

[other headers]

{

"versions": ["3.0", "4.0"],

"default" : "4.0"

}



$convert

• Ask server to convert versions



Non-API Exchange

• There’s almost always a mime type:

application/fhir+json; fhirVersion=4.0

• If that’s not possible (local files, no context policy):

"meta" : {

"profile" : ["http://hl7.org/fhir/4.0/StructureDefinition/Patient"]

}



Persisting Multiple versions

• Store Resources with known version (implicit, or explicit) 

• Use the profile marker if you really need to



Persistence and Conversion

In general 3 options:

• Store resources as you get them (and convert on the fly if needed)

• Store resources in your preferred version (and convert if needed)

• Extract information from resources and store in (relational?) database

Or… Do all 3 things at once:

• Store resources as you first received them (for audit trail)

• Store resources in your preferred version (for flexibility)

• Build specific tables for particular indexing (for performance)



Documentation Strategy

• Simple: Different documentation for different versions
• Multiple repetitions of narrative 

• Implementers have to compare between versions

• Complex: One set of documentation, with different profiles/examples
• One combined narrative with explicit differentiation

• Implementers explicitly deal in multiple versions

• Which is better depends on the implementers

• Do the business rules differ? What about documentation versions?



IG Publisher Support

• IG Publisher is R5 internally 
• All profiles, value sets, code systems etc are converted to R5

• Some IGs are multi-version 
• Multi-version output – terminology e.g. THO: .r4, .r4, .r5 – R{X} versions of 

resources

• Multi-version output - some profiles e.g. Subscription Backport (.r4, .r4b)

• Use R5 resources internally (but no implementation support for R5 resources)

• No plans for fully cross-version IGs (break the backbone!)



Managing Multiple Versions

• Versions are expensive and painful

• There’s some fantasy land where they don’t happen



Should you move to R5?

• Do you need the new things in R5
• Have they been / can they be backported?

• How much will you benefit otherwise?

• How much will it cost?
• How big is your eco-system, what’s your change overhead?

• For most existing trading systems, cost/benefit says don’t change

• But don’t ignore R5: there’s lots of clarifications and fixes
• Important advice for implementing R4



FHIR Manifesto

• Focus on Implementers

• Target support for common scenarios

• Leverage cross-industry web technologies

• Require human readability as base level of interoperability

• Make content freely available

• Support multiple paradigms & architectures

• Demonstrate best practice governance



Tuckmans Stages of Group Development

•Forming

•Storming

•Norming

•Conforming (performing?)

•Adjourning



Our goal for R6

•Make the patient core ‘Normative’





Normative

“No breaking change such that previous implementations that were 
correct become incorrect”

• In a bi-directional interface, this is rather difficult to define, and to 
decide

• But it’s pretty much happening by default with R4
• Our feedback is gradually getting clearer



Normative Tasks

• Get implementer feedback / market survey to confirm our decision

• Change our existing processes so that we can succeed in getting 
‘normative’

• Improve the definitions around breaking changes and make 
implementer expectations clearer

• Decide which resources will be made normative, and which won’t
• FOMO for some resources 

• Some resources are not candidates (too early in the Tuckman cycle)



Other R6 Agendas

• Finish with Obligations / Additional Bindings

• Improve quality processes/QA on supporting collateral 

• Invest more in version Migration Assistance

• Can we do something about on-ramps? (Complexity)
• Determine common on-ramps for implementers



Supporting implementers

• Support scaling the ecosystem internationally 
• 88 countries and growing quickly

• Continue to improve the tools that support the eco-system
• Validator, simplifier, terminology servers(!!!), sushi, code generators, 

publishing tools

• Grapple with the IG/profile explosion

• Improve testing / conformance eco-system 

• More work on mapping / transformation

• Work with regulators – building relationships and trust


	Lysbilde 1: FHIR R4 / R5 / R6
	Lysbilde 2: R5 Overview
	Lysbilde 3: Overview of changes in R5
	Lysbilde 4: Rework of Subscriptions framework
	Lysbilde 5: Rework the type framework
	Lysbilde 6: Move extensions to a new package
	Lysbilde 7: RESTful API and Search clarifications
	Lysbilde 8: New, renamed, and deleted resources & types
	Lysbilde 9: Code systems and value sets to terminology.hl7.org
	Lysbilde 10: Operations for Large Resources
	Lysbilde 11: Additional Bindings
	Lysbilde 12: Other changes in R5
	Lysbilde 13: Converting between versions
	Lysbilde 14: Converting between versions
	Lysbilde 15: Multiple releases of FHIR
	Lysbilde 16: Supported Version Releases
	Lysbilde 17: Release History
	Lysbilde 18: Versioning is expensive
	Lysbilde 19: What version is this resource?
	Lysbilde 20: Stamping version inside a resource
	Lysbilde 21: Version Numbering Strategy (Standards)
	Lysbilde 22: Versioning Profiles, Value sets, Code Systems
	Lysbilde 23: Versioning Extensions
	Lysbilde 24: Cross-Version extensions
	Lysbilde 25
	Lysbilde 26: Cross-Version extensions: Limitations
	Lysbilde 27: Versioning Software Tools
	Lysbilde 28: Supporting Multiple Versions
	Lysbilde 29: Converting between versions
	Lysbilde 30: Converting between versions
	Lysbilde 31: Java Converter
	Lysbilde 32: Version independent logic
	Lysbilde 33: Resource Conversion isn’t everything
	Lysbilde 34: Simplest Approach: multiple end-points
	Lysbilde 35: Single end-point, multiple versions
	Lysbilde 36: Single end-point, multiple versions
	Lysbilde 37: Determining Server Versions
	Lysbilde 38: $convert
	Lysbilde 39: Non-API Exchange
	Lysbilde 40: Persisting Multiple versions
	Lysbilde 41: Persistence and Conversion
	Lysbilde 42: Documentation Strategy
	Lysbilde 43: IG Publisher Support
	Lysbilde 44: Managing Multiple Versions
	Lysbilde 45: Should you move to R5?
	Lysbilde 46: FHIR Manifesto
	Lysbilde 47: Tuckmans Stages of Group Development
	Lysbilde 48: Our goal for R6
	Lysbilde 49
	Lysbilde 50: Normative
	Lysbilde 51: Normative Tasks
	Lysbilde 52: Other R6 Agendas
	Lysbilde 53: Supporting implementers

